

Notes Windows Mac OS X Linux Custom area Calibration Binding Examples Contact

UPDD supports both multi-monitor and multiple pointer device configurations. This means that UPDD can cater with a system

that has more than one monitor or more than one pointer device and any combination thereof can be supported by UPDD.

This document describes the multi-monitor and device considerations for each of the supported desktop operating systems.

Please ensure you read the notes section before using multi touch devices or multi touch monitors.

Multi-monitor and multi-device notes

Since UPDD 4.1.10 the driver utilises QT monitor matrix (QDesktopWidget class) in all OS to retrieve monitor layout

information and monitor handling. For successful UPDD multi-monitor operation the QT monitor properties must see either

different monitor ids or co-ordinates. Therefore the UPDD driver can only support configurations that are identifiable by the

QT function and in most cases we would expect this to handle most multi-monitor configurations.

Should you experience any unusual multi-monitor issues our command line utility can be used to view the system’s multi-

monitor layout as seen by our driver.

When using UPDD in a multi-monitor environment the following issues need to be considered:

Different video resolution

Native video mode allows different screen resolutions to be set on the individual monitors. Some custom video drivers may

not allow different screen resolutions and all monitors will have to be the resolution of the largest resolution defined on one of

the monitors. However, they may allow the viewable area to be a lesser resolution and ‘scroll’ the desktop around the full

resolution. In this instance a custom segment will need to be defined to calibrate the viewable area and the scrolling
capability will have to be locked as calibration does not work on scrolling desktops unless UPDD has been written to

specifically interface with the video driver such that the two drivers work together and maintain calibration. This has been

developed for one specialised system only. Please contact Touch-Base for more information.

Multiple devices

UPDD has no restriction on the number of devices it can handle. As long as the controller can be connected via one of the

supported hardware ports UPDD can be configured to support it.

Hardware port binding (port and desktop segment association)

In a multi-device environment a hardware port will be required for each pointer device. Most devices used in a multi-

monitor/device environment are serial or USB and any of these ports can be used. In a multi-monitor / multi-touch device

environment it is important to be able to associate a specific touch device (controller) with a given monitor (desktop).

Serial controllers are connected to unique ports (com1, com2 etc) which offers a unique identifier to the device.

For USB the binding method is different depending on the OS is use.

See Binding section below for more details.

Anchor mouse – Windows only

In a multi-monitor, touch screen environment, it may be a requirement to leave the system pointer at its current location

once the touch is complete. E.g. a three monitor system where the left and right screens are touch but the middle screen is

mouse driven. With normal touch drivers the cursor would be left at the last point of touch forcing the user to use the mouse
to bring the cursor back to the central monitor each time a touch was made. Using the Anchor Mouse function, as found in

the UPDD Console - Properties dialog, the cursor will be returned to its previous location once the touch has been processed.

This is a system wide setting that effects all devices once enabled.

Scrolling desktops – Windows only

Some systems support higher video resolutions than the video display can physically support. In this instance the video

display becomes a ‘window’ on to the desktop and the desktop scrolls around video. In this instance touch screens cannot

stay calibrated as they do not know the desktop element currently on display. For a touch screen driver to work in this
environment the touch driver has to liaise with the video driver to be informed of the desktop element currently in view. This

has been performed by UPDD with one video chip manufacturer and calibration was retained throughout the scrolling process.

Desktop priority

Desktops can be allocated priorities when used in a multi-monitor environment and are defined in the UPDD Console -

Properties dialog:

The Interlock priority is a method of assigning a sharing priority to a device in a multi-device environment. Prior to

introducing this function if two pointer devices were used at once the system pointer would rapidly jump between all the

points of touch. This function avoids this symptom. See the UPDD on-line help for more information.

The Admin priority hands control immediately to the device and is really only ever useful when one administrator desktop is

in use. Setting more than one desktop introduces the issue where the system pointer will rapidly jump between all the points

of touch if two or more admin desktops are touched at the same time. Given that a pen up will be forced on any Interlock

device currently in use we recommend that those devices should be working with an appropriate click mode whereby the pen

is not held down during use.

Clone settings

Multi-monitor configurations normally require a degree of configuration in UPDD. If the configuration is to be replicated on a

number of systems then UPDD has a useful facility to ‘clone’ the settings of one system on subsequent installs. Once the

Revision 1.20, 15th July 2014

www.touch-base.com\documentation\general

Multi-monitor and device support

Page 1 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

system is configured as required the ‘Dump settings’ function is located in the UPDD Console, Status dialog. A file is created

that contains all the settings. This file is placed with the UPDD setup.exe program during the next install. See the UPDD

Installation document for more information.

Rotate

Video rotation is catered for in UPDD and with some rotate methods UPDD can cater for rotation beyond the primary monitor.

See the rotate document for more information.

Multiple mouse pointers – Windows only

It is possible to give each pointer device in a Windows environment its own ‘mouse’ cursor, via specialised OS extensions and

this is currently being investigated.

Windows

Ensure the notes section at the beginning of this document is read before utilising multiple devices in a Windows

environment.

The following notes refer to single user, multiple monitor configuration. If using multi-monitors in a multi-user/seat

environment please refer to this document.

To be able to configure UPDD in these situations you need to understand how Windows caters with multiple monitors and

devices, specifically how multiple monitor configurations are supported by Windows and the manner in which the desktop is

defined.

Desktop resolution

We are all familiar with a single monitor displaying a complete Windows desktop, as this is the standard system configuration.
We are also familiar with the concept of different video resolutions and most of us work on systems with a screen resolution

of 800x600 or 1024 x768. The first figure defines the number of pixels in the X plane (left to right) and the last figure defines

the number of pixels in the Y plane (top to bottom). Although these video resolutions are familiar to us Windows maps these

‘video pixel’ resolutions to its own virtual desktop resolution of 65535 (X plane) x 65535 (Y plane).

Pointer device calibration data relates to the virtual desktop. When UPDD interfaces with the operating system’s virtual mouse

port driver to request the system pointer to be moved to a specific X, Y co-ordinate it references the virtual desktop

resolution, hence the change of user screen resolution does not affect the performance of UPDD.

Depending on the type of multi-monitor support employed within the system, as discussed below, each monitor will either

have its own virtual desktop of range 65535 X and 65535 Y or share one virtual desktop across all monitors, thereby each

controlling a segment of the virtual desktop. The user sees the same results, that is, the desktop is spread over all the

available monitors, but internally this process is handled differently.

In the above examples the X and Y co-ordinates are spread across the monitors in a 4 x 1 configuration. However, with native

video support each desktop has its own virtual range whereas, in the custom video support the Y co-ordinates will be in the

range 0 to 65535 but the X co-ordinates will be in the range 262140. In the custom video, if the monitors were stacked in a

square (2x2) then the range would be 0 to 131070 and 0 to 131070.

Multi-monitor support

Each monitor is either supported by the standard Windows video drivers (Native Window support) or specialised drivers

supplied with multi-video port cards (Custom and Stretched video support) as described below:

Native video support
Native support for multiple monitors was available with Windows 98 and has continued to be available under ME, W2K and XP.

This allows for individual video cards to be placed in the system and for Windows to automatically recognise that the system

has more than one video card and to show this in the desktop properties. Each monitor can then be enabled/disabled via the

desktop display properties and each can have its own settings.

In this environment each monitor has its own complete virtual desktop.

Page 2 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

In the above example the system has two enabled monitors.

Segmented video support

Prior to the availability of native video support, introduced with Windows 98, video card manufactures had to develop their

own drivers to implement multiple monitor support for Windows 95 and NT and, for many reasons, these drivers are still used

in Windows systems that offer native support, especially where the native video drivers do not support the hardware. In this

case Windows is only aware of one monitor but the custom driver handles the multiple monitor configuration.

In this environment each monitor shares the virtual desktop and maps to a segment within the virtual desktop.

In the above example a Quad video card is used to offer four monitors, two of which are enabled.

Stretched video support

In some cases a single logical desktop (the OS sees a single monitor) can be stretched across (mapped to) individual physical

monitors, as in this Windows example:

Page 3 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

UPDD configuration

UPDD is responsible for moving the system pointer on the desktop and therefore in a multiple monitor environment it needs

to know the method employed to handle the video cards. Further it also needs to be aware of the monitor/desktop area to be

associated with the pointer device such that the movement of the system pointer can be restricted to the associated area.

Since 4.1.10 there are two interfaces used to feed touch data into the OS, mouse or HID (Vista onwards). These interfaces

are selected via the Extended touch setting and by default they are associated with the Windows primary monitor. If the

touch screen is to be associated with a different monitor, other than the Primary monitor, then the touch screen / desktop

association is adjusted as follows:

The UPDD Console shows the pointer devices configured in the driver. The Hardware dialog shows the monitor or desktop

area associated with the current device, as shown below:

UPDD ships with a number of predefined desktop areas that take into account the different methods of video support as

follows

** Segments apply by default to Monitor 1. To apply these settings to a different monitor for a given device manually set

Video support method Values (caters for)

Extended 16 monitor definition – Monitor 1, 2, 3 etc

Segments** Up to 4 segments – Left, Right half; Left, Middle, Right third;

Top left, bottom left, top right, bottom right quarter

Stretched** 2 stretched segments – Left and right

Page 4 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

“MonitorNumberForSegment” in the TBUPDD.ini file or use the command line interface to define the setting e.g.

tbutils segment “left half” setting dw monitornumberforsegment 2

sets the touch device set to left half to use the left half of monitor 2.

or

tbutils device 3 setting dw “monitornumberforsegment” 2

indicates that any segments defined for touch device with device handle 3 to use monitor 2.

Standard desktop mode definition

If the device is to move the system pointer across the whole desktop (being the primary monitor), as standard in a single

monitor configuration, then the desktop area name is set to ‘Whole Desktop’ or Monitor 1, irrespective of video support in

use.

Extended desktop, native mode definition

When using Vista, Win 7 or Windows 8 the Extended Touch option will be available and the monitor setup is different

depending on this setting.

If the device is restricted to moving the system pointer on an extended monitor, as supported by Native Video drivers, then

the desktop area name is set to the name of the monitor, e.g. Monitor 2. If the dialog shows the Configure All option then

this is very useful in a multi monitor system as this will automatically assign the correct desktop for all touch monitors on the

system rather than having to manually assign them one at a time.

In Vista, Windows 7 and Windows 8, the UPDD extended touch feature (interface via Virtual HID) is initially associated with

the Primary Monitor, e.g. in a single physical or virtual monitor setup. However, if the UPDD extended touch feature is used
on an extended desktop monitor (non primary monitor) as supported by Native Video drivers, then Tablet PC settings have to

be used to assign the UPDD Virtual HID device to an extended desktop monitor as described here.

Extended desktop, segment mode definition

If the device is restricted to moving the system pointer on a specific monitor, as supported by a custom video driver, then the

desktop area name is set to the name of the segment, e.g. Left half, Right half etc.

Extended desktop, Stretched mode definition

If the device is restricted to moving the system pointer on a specific monitor, as supported by a stretched driver, then the

desktop area name is set to the name of the segment, e.g. Left Half – Stretched, Right Half - Stretched.

Important notes: Using identical USB touch devices

If a 2nd USB touch device is added and the touch device is ‘technically’ identical to the device already in use then after

connection for the first time it may be necessary to reestablish relationship between touch screens and Windows desktops and

recalibrate.

Mac OS X

Ensure the notes section at the beginning of this document is read before utilising multiple devices in a Mac OS X

environment.

For Mac systems that are capable of supporting more than one monitor the multi-monitor configuration is shown in the

System Preferences, Hardware, Displays, Arrangement dialog as follows:

UPDD Mouse Interface

Extended Touch Interface

Page 5 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

UPDD configuration

UPDD is responsible for moving the system pointer on the desktop and therefore in a multiple monitor environment needs to

be aware of the monitor/desktop area to be associated with the pointer device such that the movement of the system pointer

can be restricted to the associated area.

The UPDD Console shows the pointer devices configured in the driver. The Hardware dialog shows the monitor or desktop

area associated with the current device, as shown below:

UPDD ships with a number of predefined desktop areas for use with the Mac configuration. The system has been tested with

8 touch monitors without issue. Each monitor can have a different screen resolution.

In a multi-monitor environment a reboot will be require before added devices are active.

External dual head devices

External video extenders are available for the Mac such that a single video port, typically on a Mac Mini, can be extended

across two monitors.

One such device. dualhead2go (http://www.matrox.com/graphics/en/gxm/products/dh2go/home.php) allows two screens to

be connected to a single VGA connector on the MacMini. To the MacMini, it looks like one wide screen (2048x768). It is

actually two separate flat panels each set to 1024x768. If using this device we recommend using corner calibration points (2

points, 0% margin) and ignoring the calibration points drawn in the corners of both devices and just touch the appropriate

corners of the touch device.

Linux

Page 6 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

Ensure the notes section at the beginning of this document is read before utilising multiple devices in a Linux environment.

The following notes refer to single user, multiple monitor configuration. If using multi-monitors in a multi-user/seat

environment please refer to this document.

Given that Linux supports a wide variety of monitor configurations it is important that the configuration is one that can be

handled by UPDD. If the multi-monitor layout listing does not return sensible information and you have difficulty configuring

UPDD to work with your configuration, it is likely that the monitor configuration needs to be tweaked so that it does. If the

layout is sensible, but either the calibration screen appears in the wrong place or the mouse does not track correctly this
suggests a xorg / display manager issue that probably requires tweaks in the xorg or display manager.

UPDD on Linux supports the use of multiple monitors with the desktop extended (stretched) across all the monitors. With

earlier releases of our software (version 4.1.1 and 4.1.8) the monitor layout had to be horizontal, left to right, such as shown

in the example below for a three monitor setup:

The “serverlayout” section of the xorg.conf file has the screens defined thus:-

Screen 0 "Screen0" 0 0
Screen 1 "Screen1" 1920 0

Screen 2 "Screen2" RightOf "Screen1"

With UPDD 4.1.10 there is no such restriction.

Under Linux there are a number of ways to support multiple monitors, some generic and others specific to particular graphics

cards or even Linux distribution. In this section we cover the generic method referred to as Xinerama and other methods

specific to Nvidia graphics cards. As of Sept 11 we revamped multi-monitor support, to overcome multi-monitor issues

reported by various customers, and fully tested for Twinview, Xinerama, and native multi monitor, with vga splits on any

monitor in any of these configurations. All appears to be working as expected.

Xinerama

From the web “Xinerama was originally developed by DEC (Digital Equipment Corporation) under the name of PanoramiX, and

was later incorporated into the X Window System as Xinerama. Not only is Xinerama compatible with NVIDIA solutions, but

also is universal to all graphics cards with supportive Linux drivers and the X Window System” and is explained in greater

detail here: http://en.wikipedia.org/wiki/Xinerama.

To setup a system using Xinerama you should refer to the documentation provided by your vendor or available on the web.

The steps we followed to configure our Xinerama based system is outlined below as an example:

• Modified xorg.conf to add new sections for our second graphics card and monitor, and the corresponding “Screen” section

to link the two together.
• Added the new screen into the “ServerLayout” section using the following line:-

Section "ServerLayout"
 Identifier "Multihead layout"
 Screen 0 "Screen0"
 Screen 1 "Screen0 (2nd)" RightOf "Screen0" <<<<added
 InputDevice "Updd0" "SendCoreEvents"
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
 Option "Xinerama" "on" <<<<added
 Option "Clone" "off" <<<<added
EndSection

...
Machine specific sections removed
…

Note – This section was added on our Linux 64 becau se we were using an Nvidia graphics card which need ed a driver to be
downloaded and installed from their website. The dr iver had non-standard extensions that can guess the size of the screen and this
stopped some X software,
including our driver, from working correctly.

Section "Screen"
 Identifier "Screen0"
 Device "Videocard0"
 Monitor "Monitor0"
 DefaultDepth 24
 SubSection "Display" << < This section specifies the resolutions and bitdepths of the respective monitor
 Viewport 0 0
 Depth 24
 Modes “1600x1200” “1280x1024” “1024x76 8” "800x600" "640x480"
 EndSubSection
EndSection

Section "Screen"
 Identifier "Screen0 (2nd)"
 Device "Videocard0 (2nd)"
 Monitor "Monitor0"
 DefaultDepth 24
 SubSection "Display"
 Viewport 0 0
 Depth 24
 Modes “1600x1200” “1280x1024” “1024x76 8” "800x600" "640x480"
 EndSubSection
EndSection

Note the changes above enabling Xinerama and the sections specifying the screen resolutions. On some systems using the

Page 7 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

Nvidia graphics driver these are sometimes missing.

UPDD does not currently support multiple monitors configured for cloned/mirrored mode (same desktop seen on all monitors)

or extended desktops not using the Xinerama extensions – see

http://en.wikipedia.org/wiki/Xinerama#Dual_display_X_without_Xinerama for more details. Please contact us if this is

required.

Nouveau

From the web “Nouveau Becomes NVIDIA's New Standard Driver Feb 22, 2010”

Being the ‘new’ driver this is the default driver for Nvidia cards on more recent Linux kernels which has built in support for

multiple monitors. It can also be downloaded as required. To activate multi-monitor support open System, Preferences,

Monitors dialog:

The desktop will automatically extend to the second monitor. You can now configure UPDD as usual for multi-monitor, see
below.

Twinview

As taken from the web “TwinView was developed by NVIDIA for allowing multiple monitors to be powered by a single GPU

with their array of GeForce graphics cards.”

To implement this support use the official Nvidia driver which has support for TwinView. To activate multi-monitor support

open System, Preferences, Monitors dialog:

Configuring a dualhead system via twinview effectively allows one GPU to support two physical monitors. Linux will only list

one monitor for each Twinview. Given this Linux view, UPDD needs to be configured to handle each half of the GPU rather

than the whole monitor.

You can now configure UPDD as usual for multi-monitor, see below.

UPDD configuration

UPDD is responsible for moving the system pointer on the desktop and therefore in a multiple monitor environment needs to

be aware of the monitor/desktop area to be associated with the pointer device such that the movement of the system pointer

can be restricted to the associated area.

Once you have a multi-monitor system configured you should use the UPDD Console to configure your touch-screens and

monitor association. This is done by going to the “Hardware” page in the Console and clicking the “Handling XXX Desktop”

Monitor preferences with Nouveau off Select the second monitor and switch it to "on" and click

"Apply

For the second monitor click "Configure" and a dialog will

appear

Select "TwinView" and click OK. Then click "Apply"

Page 8 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

where “XXX” is the current desktop being handled, e.g. “Handling Whole Desktop”. You should then select the monitor or

desktop segment you want to use from the desktop and monitor list.

Figure: Allocating a touch-screen to Monitor 1

UPDD ships with a number of predefined desktop areas that take into account the different methods of Linux video support as

follows

**These settings apply by default to the first defined GPU - Monitor 1. If the twinview devices are connected to a different

GPU then use the setting “MonitorNumberForSegment” in the TBUPDD.ini file to specify the GPU.

In this example the Twinview devices are connected to GPU seen as Monitor 2:

1) Install UPDD and plug in both touch monitors. At this point both touch devices will be assigned to ‘Whole’ desktop in

the UPDD console.

2) Select the Configure All… option in the UPDD Console.

3) When the screens display the cross touch the left-hand screen then cancel the calibration (esc key)

4) One of the devices will now be set to Monitor 2. Change this to Left Half as shown:

5) Select the other device which will be defined as Whole Desktop and change to “Right half”.

6) Run '/opt/tbupddlx/tbutils list'. Note which two controllers are assigned to the left and right halves (X and Y, where X

and Y are the device numbers shown in the list).

7) Run '/opt/tbupddlx/tbutils device X setting dw monitornumberforsegment 2'.(X = device number)

8) Run '/opt/tbupddlx/tbutils device Y setting dw monitornumberforsegment 2'.(Y = device number)

Video support method Values (caters for)

Native 16 monitor definition – Monitor 1, 2, 3 etc

Segments** Up to 4 segments –

Left, Right half – two monitors per GPU (e.g. Twinview)

Left, Middle, Right third - three monitors per GPU

Top left, bottom left, top right, bottom right quarter - four monitors per GPU

Stretched** 2 stretched segments – Left and right

Page 9 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

The following example shows how three monitors might typically be configured in a Linux system:

After you have configured the monitors you will need to calibrate each touch-screen before using them.

Custom Desktop area

In most cases it is the norm to associate a complete video display (monitor) to each pointer device. I.e. the pointer can move

around the entire monitor. However, we are aware that some users may wish to restrict the movement of the cursor to a
specific area on the monitor. In this case a custom desktop area can be used to restrict cursor movement to a given area on

the monitor. The area is defined by specifying the top left (X min/Y min) of the area and its height (Y range) and width (X

range).

At the time of writing custom desktop area setting values are restricted to within the range 0 to 65535 so is only available on

the primary monitor with native video support (and, under Windows, all monitors with custom video mode support). This

limitation will be addressed in future releases of the driver.

Native video mode support

To define a custom desktop area, select ‘Custom’ as the desktop area and set the required logical desktop area settings, as

shown in the following example:

In the above example, the touch will be restricted to the bottom right hand corner of the primary monitor, as shown below:

Page 10 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

To apply custom settings to a different monitor other than the primary monitor you need to either:

manually set “MonitorNumberForSegment” in the TBUPDD.ini file

or

use the command line interface to define the setting

e.g. ‘tbutils segment custom setting dw monitornumberforsegment 3’ indicates the device with the ‘Custom’ segment setting

is to apply to Monitor 3.

Custom video mode support – Windows only

With Windows custom video mode drivers, the entire virtual desktop, irrespective of the number of monitors, is mapped to a

grid 65535 x 65535. In this mode, a custom desktop area can also be used to handle different display configurations than

that catered for with the pre-defined set of desktop areas.

In this mode the logical desktop settings values should be based on example values below:

E.g. In an eight monitor system, set in a 4 x 2 pattern. On all the monitors the height will be 7FFF (2 monitors deep) and the

width will be 3fff (4 monitors wide). Top (Y min) on the top four will be 0 and 8000 on the bottom four monitors. Left (X min)

will be 0,4000,8000,C000.

Calibrating multiple devices

Prior to calibrating a device in a multi-device environment you need to associate the desktop on display on the monitor with

the touch screen attached to the monitor and listed in the UPDD Console. If, for example, you had 3 USB controllers listed in
the UPDD Console you would not immediately know the one to associate a given monitor/desktop and ‘trial and error’ would

be needed to set the desktop with the controller until the correct match was found.

To overcome this issue in a multi-monitor environment we have introduced a procedure to automatically assign a touch

controller to a given desktop at the point of touch. This procedure can be invoked in 1 of 3 ways:

1) Since UPDD 4.1.8 select the standard calibrate routine where Handling Whole Desktop is defined for any device (the

default after install) in a multi-monitor system. This will assign and calibrate for all listed touch devices.

No of monitors

in plane Position Min Range
Standard

Horizontal

plane definition

 Decimal Hex Decimal Hex

1 monitor 1st monitor 0 0 65535 ffff Whole desktop

2 monitors 1st monitor 0 0 32767 7fff Left half

 2nd monitor 32768 8000 32767 7fff Right half

3 monitors 1st monitor 0 0 21845 5555 Left third

 2nd monitor 21845 5555 21845 5555 Middle third

 3rd monitors 43690 AAAA 21845 5555 Right third

4 monitors 1st monitor 0 0 16383 3fff Left quarter

 2nd monitor 16384 4000 16383 3fff Second quarter

 3rd monitors 32768 8000 16383 3fff Third quarter

 4th monitor 49152 C000 16383 3fff Fourth quarter

Page 11 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

2) Since UPDD 4.1.8 select the ‘Configure All…’ option in the UPDD Console, Hardware, Handling xxxxxxx desktop. This

will assign only.

3) Since UPDD 4.1.6 run the calibration program with parameter /assignall. This will assign and calibrate.

To assign the desktop/touch relationship the calibration program cycles through all discrete desktops displaying the following

screen:

If touched the desktop and touch relationship is recorded in the settings. If not touched this screen is displayed on the next

monitor.

If calibration is also to be performed the calibration screen is also displayed on each touched screen.

Page 12 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

Notes:

1) These calibration options (assign all / configure all) are only useful where each touch screen is to be associated with a

discrete desktop monitor. Where an individual logical desktop is stretched or mirrored across multiple physical

monitors then manual configuration will still be required.

2) To configure desktop / touch screen relationships without performing calibration use the /configureall option.

3) This procedure is especially important when using multiple graphics cards where in some instances the Monitor

number seen in the Windows Display Properties does not correlate to the internal display reference used by UPDD**.

E.g. we have a 3 monitor system with 3 x dual graphics cards where the display properties shows one of the monitors

as Monitor 3 but the actual internal display name relates to Monitor 5! In this case Monitor 5 needs to be selected and
this would not be known by an end user. This option will set the desktop segment to that needed to correctly address

the monitor during calibration and system pointer placement. ** due to some issues we observed under Windows 7 we

changed the way we reference the internal video address space and this change has resulted in internal video

reference names not always being the same as the name shown by the desktop properties. The names show by the

desktop properties relate to the physical number of monitors connected whereas the internal names relate to the video

adaptor in use, in most cases they are one of the same, but not always.

Controller and desktop binding

In a multi-touch device / monitor system a mechanism is required to associate the touch device with its UPDD setting
(desktop area, calibration data etc) such that the association between the settings and the device is retained across reboots

or if touch controllers are unplugged and replugged.

In the case of serial ports UPDD settings are bound with a touch device on a given serial port and therefore is bound to the

port. If the device is plugged to a different com port then normally manual intervention is required to change the settings to

refer to the new com port (unless the serial device is auto-detected in which case it utilizes controller binding)

With USB devices, plugged randomly in to any USB port, binding is straight-forward in single device systems as only one

device needs to be bound with the current UPDD settings. However, in multiple touch device environments, the binding is

more complex, especially where the USB controllers are identical in characteristics. Depending on the USB devices in use in a
multiple touch device environment the driver will either perform direct controller binding or USB port binding, as discussed

below:

Windows

With a USB device, UPDD creates an internal bind key that is held as part of the UPDD settings for that device such that the

key can be used to associate the device with its settings such that, for example

Depending on the characteristics of the USB controller the controller will either be seen by UPDD as unique or identical

Unique

For USB devices utilizing a unique serial number or iproduct per usb controller the bind key is held in the format:

P:n:vid:pid:iproduct:serialnumber – See Bind key components for more details

e.g. controllerbindkey=U:0:1255:7:2:07D22494

This effectively means the UPDD settings are associated directly with the controller.

Irrespective of the number of touch controllers in use or the unplugging or replugging sequence, controllers with unique

characteristics will always be correctly associated with their settings as the binding directly relates to the controller

connected.

Note: When UPDD examines the full bind key, if the controller has iproduct binding enabled in our controller definition, the

serial number is ignored (allowing the iproduct to be used instead).

Identical

For USB devices without serial numbers and using the same iproduct per usb controller the bind key is derived in one of two

ways:

Version 5.1.x build 1058 and later – Win 7 and above

By default, under updd 5.1.x, with Win 7 / 8 the bind key is derived from the physical location of the device on the USB hub,

referred to as the DevicePropertyLocationInformation. E.g. Port_#0004.Hub_#0003

Note – due to a bug in XP API the returned information is incorrect resulting in an incorrect bind key with this method .e.g.:
controllerbindkey=U:0:1032:12288:2:Optical Touch Screen

Version 5.0.2 and before and 5.1.x and XP
By default, under updd 5.0.2 and Windows XP, the bind key is derived from the device instance referred to as the

DeviceInstanceId. This is a key generated by Windows to identify a connected USB device.

A typical DeviceInstanceId looks like this. USB\VID_14C8&PID_0005\6&F6C51B9&0&4

Although Windows documentation does not detail how this value is derived, in practice we find this usually provides a reliable

association.

However in cases where settings are moved from one system to another this value can change.

This results in a UPDD bind key as follows

P:n:vid:pid:iproduct:deviceinstance – See Bind key components for more details

e.g. controllerbindkey=U:0:1072:1288:2:{4d36e96f-e325-11ce-bfc1-08002be10318}\0005

This effectively means the UPDD settings are associated indirectly with the controller connected via the port

Switching the default behaviour to the alternative method is controlled by a UPDD settings tbupdd.ini setting file.

updd\parameters -> usbbindmode=0x01

Page 13 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

The default behaviour can be enabled with

updd\parameters -> usbbindmode=0x00

An easy way to do this is using tbutils with the command

tbutils nodevice setting dw usbbindmode 1

This sets the alternate behaviour for the updd version in use.

Changing this after devices are setup will lead to unpredictable results.

Binding considerations
Where a single touch controller is used and irrespective of the unplugging or replugging sequence a single identical controller

will always be correctly associated with its UPDD settings as being the only controller connected effectively makes it

‘unique’.

For multiple touch controllers that are identical and of the same type it is important that bind keys are created for each

port. This caters for the situation where the devices are randomly passed to the UPDD driver by the OS, such as at a reboot

or where two devices are connected at the same time. If UPDD just associated the device in the order in which the device

was passed from the OS to the driver the sequence of devices would change, as would calibration, such that touching a device

would move the cursor on another device.

Once plugged in and with the UPDD setting established the binding will be correct over a reboot, However, when new identical

controllers are added (See 1 below) or multiple instances of same identical USB controllers are unplugged and replugged into

different usb ports (see 2 below) may result in incorrect associations between the device and UPDD settings or a new

device appearing in the UPDD device list

Multiple USB device issues with identical devices:

Given the above issues we strongly recommend that in multi-device environments, when using identical

controllers, to avoid randomly disconnecting and reconnecting devices in to different USB ports.

Bind key logic

For those interested, the bind key logic is as follows.

When a USB controller is discovered the system creates the bind key and this is used to determine if settings already exist or

if a new device has been plugged in. Since UPDD 4.1.6, build 1150, the binding look up code first uses a partial part of the

key (P:n:vid:pid) when scanning the current UPDD settings looking for the same partial key associated with a single, inactive

(unplugged) device. If found then these settings are used. If it is not found, or not found with an inactive device, or there are

more than one of the same identical device, then the full key used in the scanning and if found these settings are used. If

neither key is found a new device is created in the UPDD device list.

Bind key components

The bind key components are described below:

USB port Connection sequence UPDD Console device list

1 – 2nd touch device connected – affecting existing settings

4 1st touch monitor connected, set to Monitor 2 desktop Controller USB – listed in black

3 2nd touch monitor connected, default settings Controller USB (2) – listed in black

Because the devices are identical and owing to the port connection sequence this results in the 2nd monitor being associated

with the settings belonging to the established 1st touch monitor and so would need recalibration (see tbcalib /assignall)

4 1st touch monitor connected, default settings Controller USB – listed in black

3 2nd touch monitor connected, set to Monitor 2 desktop Controller USB (2) – listed in black

2 -Multiple USB ports – two identical touch devices of the same type – unplugging / replugging sequence loses previous

settings and establishes new device with default settings

1 1st touch monitor connected Controller USB – listed in black

2 Never used with touch device

3 2nd plugged in Controller USB (2) – listed in black

1 1st touch monitor connected Controller USB – listed in black

2 2nd plugged in (default settings) Controller USB (3) – listed in black

3 2nd unplugged (previously used) Controller USB (2) – listed in red

Identifier Description

P (port) U = USB

N n = not used / fixed = 0

Vendor (vid)

and product (pid) id

All USB devices have a vendor and product id and these are unique to a ‘type’ of device. Two USB devices from

different manufacturers would carry a different VID/PID combination to allow for unique binding.

Some manufactures supply the same device configured with different PIDs to allow for unique identification.

In the Device Manager image below the controller’s VID = 04E7 and PID = 0007.

iProduct A USB descriptor field that can be different in some controllers from the same manufacturer.

Serial number A unique serial number is stored in each controller. Some controller firmware allows for this USB serial number to be

programmically updated.

Under Windows the Device Manager can be used to view serial numbers:

Page 14 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

Under Mac and Linux other utilities are available to view USB information.

Deviceinstance Where controllers are identical (no serial number) then UPDD pre 4.1.6 will associate the controllers with

monitors in the order that the operating system lists the devices. If this order does not change then the

monitor or segment association will be consistent. However this behavior is undefined and might change,

for example with new OS version releases, or with the insertion of other usb devices.

However, since UPDD 4.1.6 we have been experimenting to try and find a reliable method of binding

identical USB devices and our most recent approach is to utilize information tied to the device instance

(derived from the physical USB port in use) and generate a device key which is unique to each device. In

tests this works well and has been implemented in build 1099 and above. See UPDD Console, About box

for build number (middle component of Build id).

There are other, non –standard, binding methods available if required, as discussed below:

EEPROM id UPDD can be used to write unique identifier into a controller’s eeprom and retrieve it for binding purposes. Only
available to controllers with on-board eeprom storage. More information available from Touch-Base

Mac OS X

Vendor and product id All USB devices have a vendor and product id and these are unique to a ‘type’ of device. Two USB devices from
different manufacturers would carry a different VID/PID combination to allow for unique binding.

Some manufactures supply the same device configured with different PIDs to allow for unique identification.

Serial numbers A unique serial number is stored in each controller. Some controller firmware allows for this USB serial number to be

programmically updated.

Identical controllers With the exception of Hampshire USB controllers, where the controllers are identical UPDD will associate

the controllers with monitors in the order that the operating system lists the devices. If this order does

not change then the monitor or segment association will be consistent. However this behavior is

undefined and might change, for example with new OS version releases, or with the insertion of other usb

devices.

EEprom id For Hampshire USB controllers with onboard EEPROM the driver will write a unique id to each controller as

it is detected and use this id in the binding process. Provision has also been made for user access to the
EEPROM storage and retrieval along with access to the UPDD serial number

To achieve this, the UPDD API has been extended with two new functions to set and get a block of data

from EEPROM storage and a further api to retrieve the controller serial number that updd has identified.

In the case of the Hampshire TSHARC USB controller UPDD will setup an appropriate value for this serial

number.

The maximum length of data that can be written to EEPROM storage is 2 less bytes than are available on

the controller (updd uses the first 2 bytes to save serial number data).

Examples of the apis follow.

To write data

char data[4] = {‘1’, ‘2’, ‘3’, ‘4’};

TBApiWriteTSHARCEEPROM(TBApiGetRelativeDevice(0), data, sizeof(data));

To read data

char storeddata[4];

TBApiReadTSHARCEEPROM(TBApiGetRelativeDevice(0), storeddata, sizeof(storeddata));

To retrieve internal UPDD EEPROM serial number from controller:-

char serialNumber[256];

TBApiReadSerialNumber(TBApiGetRelativeDevice(0), serialNumber, sizeof(serialNumber));

Linux

Vendor and product id All USB devices have a vendor and product id and these are unique to a ‘type’ of device. Two USB devices from

different manufacturers would carry a different VID/PID combination to allow for unique binding.

Some manufactures supply the same device configured with different PIDs to allow for unique identification.

Serial numbers A unique serial number is stored in each controller. Some controller firmware allows for this USB serial number to be

programmically updated. Since UPDD 4.1.10, released 08th Oct 2010, serial numbers are used as part of the binding

process.

Identical controllers Where the controllers are identical UPDD will associate the controllers with monitors in the order that the

operating system lists the devices. If this order does not change then the monitor or segment association

Page 15 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

Example multi-device configurations

• Multiple monitors with the desktop spread over the monitors

This configuration allows the desktop to be expanded over many monitors to offer more real estate on which to run the

applications. All or some of the monitors may have a touch screen fitted. Each touch monitor will be configured to control

its specific desktop area.

 The following example shows two touch screens, one USB and one Serial, configured on separate monitors supported by

the native OS video drivers.

• Multiple monitors with the same desktop shown on all the monitors

This configuration, often referred to as Mirrored Displays, allows the same desktop to be shown on more than one

monitor. All or some of the monitors may have a touch screen fitted. Mirrored displays can either be a system setting

when more than one video controller is used or can be achieved with an external video splitter, which strictly speaking is

not a multi-monitor configuration as the system will normally have only one video card. Each touch monitor will be

configured to control the ‘whole’ desktop.

• Single touch screen monitor with additional pointer devices

This example illustrates UPPD supporting a touch screen monitor and an additional pointer device, such as an electronic

white board or digitizer. In this example both devices will be set to control the ‘whole’ desktop.

Contact

For further information or technical assistance please email the technical support team at technical@touch-base.com

will be consistent. However this behavior is undefined and might change, for example with new OS

version releases, or with the insertion of other usb devices.

EEprom id For specialised builds using the Hampshire/Microchip USB controllers with onboard EEPROM the driver can

write a unique id to each controller as it is detected and use this id in the binding process. Provision has

also been made for user access to the EEPROM storage and retrieval along with access to the UPDD serial

number

To achieve this, the UPDD API has been extended with two new functions to set and get a block of data

from EEPROM storage and a further api to retrieve the controller serial number that updd has identified.
In the case of the Hampshire TSHARC USB controller UPDD will setup an appropriate value for this serial

number.

The ELO Smartset USB touch screen is

associated with the video controller

attached to Monitor 1

The KeeTouch serial touch screen is

associated with the video controller

attached to Monitor 2

Page 16 of 16UPDD Multi-monitor and device support

31/10/2014http://touch-base.com/documentation/Multiple%20monitor%20and%20device%20sup...

